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The occurrence of most species is linked to the distribution of specific combinations of environmental variables that define
their occupied niche. As a result, the relationship between environmental variables and species occurrence can be used to
model species distribution. However, when collecting data to construct such models, it is preferable to ensure that the
survey coverage is representative of all available habitat combinations within the area as a whole to ensure that the
model does not under- or over-estimate the actual species distribution. By using multi-variate statistical techniques, a
habitat representativeness score (HRS) can be calculated to provide an objective assessment of whether a specific survey cover-
age will collect (or has collected) data that are representative of all available habitat variable combinations in an area. To
demonstrate this approach, HRSs calculated using principal component analysis were used to assess the minimum
number of evenly-spaced parallel north–south surveys required to adequately survey two study areas with differing levels
of environmental heterogeneity for all available combinations of four habitat variables. For the more environmentally homo-
geneous study area, the HRS suggests that for this survey design a minimum of five evenly-spaced parallel transects, covering
around 5% of the study area, would be required to obtain representative survey coverage for these four variables. However, for
the more heterogeneous study area, at least eight evenly-spaced parallel transects, covering around 9% of the study area,
would be required. Therefore, for a given survey design, more survey effort is required to obtain a representative survey cover-
age when the survey area is more variable. In both cases, conducting fewer surveys than these minimum values would produce
an unrepresentative data set and this could potentially lead to the production of species distribution models that do not accu-
rately reflect the true species distribution.
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I N T R O D U C T I O N

Most organisms are not evenly distributed throughout their
environment and, in many cases individuals of the same
species are clustered into specific combinations of habitat
variables that define the species’ niche (Brown et al., 1995).
This niche can be defined by an n-dimensional hyperspace,
where n is the number of variables used to describe it
(Hutcheson, 1957; MacArthur, 1972; Brown et al., 1995; Chase
& Leibold, 2003). The local environment can also be considered
as an n-dimensional hyperspace using the same variables. Where
these two hyperspaces intersect, the combinations of the n vari-
ables in the environment fall within the niche space and the
species will be able to occur. However, where the two hyper-
spaces do not intersect, the species will not be able to occur
because the values for one or more variables, either on their
own or in combination, do not fall within the niche space
(Brown et al., 1995; Robertson et al., 2001; Chase & Leibold,
2003). This means that if the niche a species occupies in relation

to specific combinations of important environmental variables
can be identified, this information can be used to provide a
picture of where that species is likely to occur and where it is
likely to be absent (Brown et al., 1995; Guisan & Thuiller,
2005). This approach for understanding the distribution of
organisms is becoming increasingly important in terms of asses-
sing and modelling species distribution, identifying and pro-
tecting essential habitats, and in terms of assessing and
mitigating human impacts upon organisms (e.g. Brown et al.,
1995; Rieser, 2000; Guisan & Zimmermann, 2000; Guisan &
Thuiller, 2005; Hastie et al., 2005).

Investigating the relationship between a species’ occur-
rence and environmental variables is not always straightfor-
ward. In particular, while in an ideal world, all possible
locations in an area of interest would be surveyed to determine
species occurrence in relation to all available combinations of
the habitat variables, in reality this is usually logistically and/
or financially unfeasible, particularly for larger areas and more
widespread species. As a more feasible approach, many studies
sample a limited number of all possible locations, and use the
relationship between species occurrence and environmental
variables in this sample to infer the wider distribution. This
approach, known by a variety of names such as habitat
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suitability modelling (HSM; e.g. Vadas & Orth, 2001), essen-
tial habitat modelling (ESH; e.g. Clark et al., 2004), ecological
niche modelling (e.g. Hirzel et al., 2002) or species distribution
models (SDM; e.g. Guisan & Thuiller, 2005), is becoming
increasingly widespread in both the marine and terrestrial
environments due to the growing use of geographical infor-
mation systems (GIS; e.g. Peterson, 2001), new developments
in spatial modelling techniques, and the increasing availability
of sufficient computer power to construct complex models
using multiple environmental variables on desktop computers
(Guisan & Zimmermann, 2000). In general, these modelling
approaches are based on the ‘occupied’ niche of a species,
i.e. the combination of variables where it actually occurs.
This may reflect the ‘fundamental’ niche of the species,
which consists of all combinations of variables where it
could possibly occur, or the ‘realized’ niche which represents
a more restricted occurrence within the fundamental niche.
While it can be difficult to identify which of these the ‘occu-
pied’ niches reflects, for most species distribution modelling
purposes, making this distinction is not essential.

While the use of species distribution modelling is growing
rapidly, it is important to remember that in order to accurately
model a species distribution from its environmental prefer-
ences, it is best if the data used to build the model are represen-
tative of the full range of all available habitat combinations (i.e.
adequately sample the entire environmental n-dimensional
hyperspace available to a species). As might be expected, if
there are large differences between the available habitat combi-
nations and those surveyed, then any model produced may not
be a true representation of the actual species distribution. This
can occur for two reasons. Firstly, there may be specific habitat
combinations where a species occurs that are not adequately
sampled, resulting in an under-estimation of the niche hyper-
space occupied by a species. Secondly, a species may be
absent from a specific location where it might be expected to
occur because while one or most environmental variables are
suitable, these co-occur with specific values of other variables
that make the otherwise suitable habitat unsuitable. This may,
in turn, lead to an over-estimation of the species niche hyper-
space (Fielding & Bell, 1997; Peterson, 2001). The under- or
over-estimation of the occupied niche hyperspace may have
serious consequences if the modelled distribution is then used
to assess possible human impacts on a species, infer the local
density of individuals or identify critical areas where conserva-
tion measures should be implemented, as the distribution itself
may also be under- or over-estimated.

While there has been a great deal of research into the best
design for surveys collecting data that will be used to estimate
the abundance of organisms within a given area (e.g. Buckland
et al., 2001; Strindberg & Buckland, 2004), there has been little
similar work into investigating how survey design and cover-
age may affect how representative data collected are of all
available habitat combinations (i.e. the environmental n-
dimensional hyperspace) and, therefore, its suitability for
modelling a species distribution (Hirzel & Guisan, 2002).
This is particularly an issue in the marine environment
where collecting data on species distribution is often logisti-
cally complex and financially expensive, so data are often col-
lected as part of research programmes also collecting data on a
wide range of organisms and for a wide variety of purposes. As
a result, scientists working on individual organisms may not
have complete control over the locations sampled during a
survey. Similarly, even when the survey design is under the

researcher’s control, external factors, such as poor weather
or equipment failure may result in gaps in planned survey cov-
erage. Therefore, it would be beneficial to have a method that
allowed the pre-study assessment of the representativeness of
a survey design and/or post hoc assessment of the representa-
tiveness of data collected before any analysis of habitat prefer-
ences or spatial modelling is conducted. This would, in turn,
allow the extent to which the results can be generalized
across a wider area to be assessed.

However, while assessing the representativeness of a pro-
posed survey design or of a specific survey track for one or
two variables, individually and/or in combination, is relatively
straightforward, studies investigating habitat preferences and
modelling species distribution frequently use three or more
individual variables which may all vary, more or less, separately
from each other. As a result, there are likely to be a large
number of available combinations of these variables within an
area, all of which may have their own influence on a species
likelihood of occurrence at a specific location. For example, a
species could differ in its water depth preference with different
combinations of water temperature and salinity. As a result,
simply sampling the full range of water depths, water tempera-
tures and salinities may not provide an adequate representation
of how a species is distributed in relation to these variables in
consort if the sample does not also cover all available combi-
nations of the three variables.

While the representativeness of survey coverage of habitat
variables is often considered on an informal, subjective basis,
here a formal, objective approach is proposed that allows how
representative a data set is of all available combinations of
specific habitat variables of interest within an area to be
assessed. Such formal, objective assessment can be conducted
either during survey design (as used in the example below) or
post hoc once data have been collected. This, in turn, may
benefit studies of habitat preferences, particularly those that
use habitat preferences to build predictive models of species
distribution, by providing a greater understanding of how
data compare to the wider, unsampled environment. This
approach is demonstrated by assessing the minimum
number of evenly-spaced parallel north–south survey trans-
ects required to collect a representative sample of data in
relation to four specific habitat variables at two study sites
with differing levels of environmental heterogeneity.

While this approach could also be used to directly compare
the representativeness of data collected using different
sampling protocols for specific circumstances (e.g. randomly
versus regularly placed survey transects or transect versus
point sampling), the purpose of this study is to demonstrate
how representativeness can be assessed using this approach.
Therefore, the relative merits of different potential sampling
protocols, other than those directly related to the specific
question addressed here, are not considered.

M A T E R I A L S A N D M E T H O D S

The habitat representativeness score
(HRS) concept
Multi-variate statistical techniques can be used to assess the
variation within a data set by scoring individual data points
along a number of axes or dimensions created based on the
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combinations of values for all variables of each data point
within the data set. This aspect of multi-variate statistical tech-
niques can be exploited to compare the combinations of habitat
variables likely to be obtained from a given survey design (or
actually obtained from a survey if a post hoc test is being con-
ducted) to an estimate of all available combinations of the
same variables for a study area as a whole. Through this, a
habitat representativeness score (HRS) can be calculated to
provide a measure of how representative sampled habitat com-
binations are likely to be of all available combinations, and
therefore how representative any habitat preferences identified
from sampled areas are likely to be of the entire study area. This
concept is based, in part, on the principal component analysis
(PCA)-based approach developed by Robertson et al. (2001)
to model a species distribution in relation to variations in its
local environment. However, instead of comparing all available
habitat combinations to species habitat preferences to predict
the species distribution, the sampled habitat is compared to
an estimate of the available habitat to assess the extent to
which the two differ. While any suitable multi-variate tech-
niques could be applied to calculate a HRS, this study used
one specific technique, PCA, to demonstrate the background
and practical application of the HRS approach.

In a PCA, the first principal component axis represents the
greatest variation within the data set, with each subsequent axis
representing a lesser amount of variation until 100% of the vari-
ation is explained. In order to assess how different subsets of
data compare in terms of variation in their combined values
for all variables, the scores for each principal component for
one set of data can be compared to the other. If there is a sub-
stantial difference in the distribution of principal component
scores between the data sets on one or more of the principal
component axes, this is will indicate that they do not consist
of data with similar combinations of the variables examined.

The HRS is calculated in two stages. Firstly, to estimate the
available habitat, a large number of points are randomly placed
throughout the study area (left hand-side of Figure 1). These
should be of sufficient number to be representative of all avail-
able habitat combinations for the variables being examined (see
below for one possible way to assess this). The value for each
variable for each of these points is then standardized by sub-
tracting the mean value of that variable from the actual value
for each point and then dividing by the standard deviation (fol-
lowing Robertson et al., 2001). This ensures that variables
measured on different scales are treated as equal during the
analytical process. A PCA is then conducted on these standar-
dized values and a principal component score is calculated for
each axis for each of the data points using the appropriate
eigenvectors. The distribution of the scores for this collection
of data points along an axis will represent the variation in
habitat combinations defined by it. This distribution is then
assessed by dividing the scores into consecutive bins of an
appropriate size and a frequency distribution is calculated for
each axis. The shape of this distribution provides an estimate
of all available combinations of habitat variables to which the
survey data set can be compared.

The second stage involves estimating which habitat combi-
nations will be surveyed by a given survey design (or were
sampled during an actual survey if the test is conducted post
hoc—right hand side of Figure 1). Individual points are
placed at regular intervals along the proposed or actual
survey track. The spacing of these points will be determined
by the scale at which the species distribution is related to

the habitat variables or the resolution at which these relation-
ships are being modelled. A value for each habitat variable at
each point is then extracted. These values are then standar-
dized using the mean and standard deviation values calculated
for the large number of random data points covering the study
area (see above). Finally, scores for each axis are calculated for
each surveyed data point using the eigenvectors for each vari-
able from the PCA. A frequency distribution is then calculated
from these scores and the absolute difference in the frequency
of occurrence of scores for the two data sets within each bin is
summed for each axis. This produces an HRS that can theor-
etically range from zero to two, with the former representing
data sets that have identical frequency distribution of their
scores for an axis and the latter representing data sets that
have completely non-overlapping distributions (which is unli-
kely since both data sets come from the same area). On this
scale, the lower the HRS, the more similar the data obtained
from a specific survey design are to the study area as a whole.
The HRS for each axis can be treated individually (e.g. since
the first axis represents the most variation in the data, its HRS
is likely to represent the most important variations between a
sample and the study area as a whole), or the HRSs for each
individual axis can be combined (e.g. by summing them after
weighting them by the inverse of the eigenvalues of each PC
axis) to produce a single overall HRS score representing all
the variation between the sampled data and that available in
the study site in terms of the habitat variables being examined.

How many of the evenly-spaced north–south
parallel survey transects are required to
representatively sample two study areas with
differing levels of habitat heterogeneity?
To demonstrate the application of the HRS concept, an analysis
was conducted to identify the minimum number of evenly-
spaced parallel north–south transect surveys required to collect
a representative sample of data in relation to all possible combi-
nations of four specific habitat variables in two hypothetical study
areas of identical size. One study area was located in the North
Sea, bounded by 568N and 58.58N latitude and 0.58E and
1.58W longitude. The second was positioned to the west of
Scotland in an area bounded by 568N and 58.58N latitude and
9.58E and 7.58E longitude (Figure 2). While the former area
only covered non-coastal shelf habitat varying in depth
between �70 m and �180 m, the latter included coastal shelf
habitat, non-coastal shelf habitat, shelf edge habitat and deep
oceanic waters, with depths varying from zero to �1700 m. As
a result, the west of Scotland site is more heterogeneous in
terms of available habitat combinations than the North Sea
study site. The variables used in this study were chosen based
on their known association with the distribution of a variety of
marine species (e.g. Perry & Smith, 1994; Bräger et al., 2003;
MacLeod et al., 2007—see below for a consideration of the
issue of not including important habitat variables in the assess-
ment and modelling process). These were water depth, seabed
gradient, the distance from the nearest land and sea surface temp-
erature. The first three variables were derived from the British
Geological Society Digbath 250 m resolution data set, while sea
surface temperature (SST) data were based on the July 2005
Modis Aqua satellite 4 km2 resolution monthly composite.

For each study area, 1000 locations were randomly gener-
ated using the random number function in Microsoft Excel
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and plotted using ESRI ARCview 3.3 geographical infor-
mation system software. The values for water depth, seabed
gradient, distance from coast and SST were extracted for
each location and the data were processed as outlined above

to produce a frequency distribution with a bin size of 0.5 for
each principal component axis. To verify that 1000 random
locations were sufficient to provide a consistent estimate of
all available habitat combinations within each study area,

Fig. 1. The process for calculating a habitat representativeness score (HRS) for a specific survey area and survey design or coverage (assuming that principal
component analysis (PCA) is being used as the multi-variate statistical technique).

Fig. 2. The west coast of Scotland (1) and North Sea (2) study areas used in analysis. Depth contours shown are 50 m, 100 m, 200 m, 500 m, 1000 m, 2000 m and
3000 m.
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these 1000 data points were compared to 10 additional sets of
1000 points and the HRSs calculated for each PC axis. If 1000
points do provide a consistent estimate of all available habitat
combinations, the HRS for each comparison between data sets
should be relatively low and consistent.

Twelve sets of survey data were then plotted for each study
area. These sets consisted of between one and 12 evenly-spaced
parallel north–south transects. For the survey data set consist-
ing of the single transect, this consisted of a survey track
through the centre of the study area from bottom to top. For
all other data sets, the track spacing was calculated by dividing
the width of the survey area by the number of survey transects.
The first transect was then positioned at half this value from the
left-hand edge of the study area, with each additional transect
being spaced from it neighbour by the full value. For all 12 poss-
ible survey designs, a point was calculated every 10 km along
the proposed survey transect lines and the values for the four
habitat variables being examined were extracted (Figure 3).
This sampling resolution was chosen purely to demonstrate
the HRS concept and different sampling resolutions may be
required for different studies (see below).

An HRS was then calculated using a PCA (see above) and
compared to assess the minimum number of evenly-spaced par-
allel survey transects required to provide a representative cover-
age of the two study areas. This minimum number can be
identified as the point at which the HRS value stabilizes at a rela-
tively consistent low value. This can be assessed by running a
trend line through a graph of the HRS plotted against the
number of transects. Data points are then removed from the
data set, starting with the surveys with the lowest amount of
spatial coverage until the trend line lies below a specific
threshold (such as 0.15—see below). While all four principal
component axes were used in the first comparison, only the
first PC axis was used for the second comparison as this was
found to be representative of the remaining axes and accounted
for the highest proportion of the variation in the data.

R E S U L T S

For the North Sea study area, the first principal component axis
for the 1000 randomly positioned data points accounted for

37.2% of the variation in the data, followed by 27.5%, 24.4%
and 10.9% for the remaining three axes. For the west of
Scotland study area, the first principal component axis for the
1000 randomly positioned data points accounted for 55.4% of
the variation in the data, followed by 25.9%, 12.6% and 6.1%
for the remaining three axes. When compared across the 10
sets of 1000 randomly positioned points, the 1000 points
used in this study produced a consistent and low HRS for all
four PC axes in both study areas (Figure 4). This confirms
that 1000 randomly-placed data produce a relatively consistent,
and therefore representative, estimate of all possible habitat
combinations for these two study areas to which the represen-
tativeness of specific survey designs can be compared. However,
as would be expected, there was greater variability in the HRSs
for the more heterogeneous west of Scotland study site than the
more homogeneous North Sea study site.

In both the North Sea and the west of Scotland study areas,
increasing the number of evenly-spaced north–south parallel
transects increased the representativeness of the survey coverage
for the available combinations of the four variables examined
(Figure 5). However, the increase in representativeness (i.e.
lower HRS) with an increasing number of survey tracks only
continues up to a certain point and beyond this a further
increase does not necessarily result in more representative
data being collected. This is represented by the point where
the HRS reaches a relatively stable value regardless of the
number of surveys. For the North Sea, this point was reached
with five evenly-spaced parallel north–south surveys, while
for the west of Scotland eight evenly-spaced parallel north–
south transects would be required to obtain a representative
coverage (Figure 5). Beyond this point, increasing survey
effort would not result in an increase of the representativeness
of the data for these study areas and the four variables examined.

D I S C U S S I O N

By calculating a habitat representativeness score (HRS), it is
possible to objectively investigate how representative a specific
survey design or track (planned or already conducted) is of all
available combinations of multiple habitat variables of interest
in a simple and straightforward manner. This, therefore,

Fig. 3. Examples of coverage for three, six and twelve evenly spaced parallel north–south survey transects. Black lines, survey tracks; black dots, sampling points
along the tracks; light grey shading, study area; dark grey, land. Depth contours shown are 50 m, 100 m, 200 m, 500 m, 1000 m, 2000 m and 3000 m.
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provides a formal, objective test of the representativeness of
the data and allows a better assessment of whether the
habitat preferences identified from a study are likely to be
representative of a wider region. This, in turn, increases the
confidence in any predicted spatial distributions created
from the identified habitat preferences. This is particularly
important when spatial models based on habitat preferences
are to be used for assessing and/or mitigating possible
human impacts on marine organisms, or when identifying
essential habitats for conservation purposes (e.g. Guisan &
Thuiller, 2005).

The HRS also allows various potential aspects of survey
design to be investigated prior to conducting field studies to
identify the most appropriate design and number of transects
to be identified for a specific area. This could potentially save
both time and money by identifying the minimum amount of
survey effort required. In addition, it could help ensure that
surveys that are conducted to collect data for habitat model-
ling purposes manage to collect a sufficiently representative
set of data to achieve this aim. The findings of this study are

consistent with those of Hirzel & Guisan (2002) that larger
sample sizes are better for modelling habitat suitability. As a
result, spatial models based on data collected from a small
amount of survey effort may not provide a good represen-
tation of a species distribution as the data are unlikely to be
representative of all available habitat combinations. For the
specific survey design outlined above, fewer survey tracks
were required to produce a representative sample of the
more homogeneous North Sea site than the more hetero-
geneous west of Scotland site. The objective nature of the
HRS allows this difference in the survey effort required for
the two areas to be quantified. In terms of the area surveyed
within each study site, the number of north–south parallel
surveys required to be representative of all available habitat
combinations for this survey design approximates to around
5% of the study area for the North Sea and 9% in the more het-
erogeneous west of Scotland region.

However, a few potential issues should be noted when
applying the HRS concept for assessing representativeness of
data for modelling purposes. Firstly, the identified minimum

Fig. 4. A comparison of the habitat representative score (HRS) for the 1000 randomly-placed points when compared with 10 other sets of 1000 randomly-placed
points calculated using a principal component analysis. Values shown are mean and standard deviation HRS. The HRS were sufficiently consistent between the
data sets to suggest 1000 randomly positioned data points are sufficient to capture available combinations of the four habitat variables being examined (Left: North
sea study area; Right: west of Scotland study area).

Fig. 5. A comparison of the habitat representativeness score (HRS) for surveys consisting of between one and 12 evenly-spaced parallel north–south transect lines
in the two study areas calculated using a principal component analysis. The minimum number of survey tracks required to provide a representative sample of all
available habitat combinations can be identified by the point where the HRS stabilizes at a relatively consistent value as the number of survey tracks increases
(marked by arrows). NS, North Sea; WOS, west of Scotland.
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levels of survey coverage are not absolute and other possible
survey designs, such as parallel surveys running east–west
through the study areas, zig-zag surveys though the study
area or surveys running perpendicular to a topographic
feature such as the shelf edge, are likely to result in different
specific limits to the minimum survey coverage required to
obtain representative data for each study area. In particular,
for the purposes of being able to make direct comparison
between the two study areas with different levels of habitat
heterogeneity, this study used parallel north–south surveys
in both study areas. This meant that the transects were per-
pendicular to the main topography of the study area in the
North Sea and parallel in the west of Scotland study area.
Undoubtedly, a better survey design for the latter study area
would have been to have surveys running east–west perpen-
dicular to the topography. However, as noted above, the
purpose of this study was not to define the best survey design
for each study area, but rather to demonstrate how the HRS
can be used to assess representativeness of a specific survey
design or coverage. Despite these issues, the general conclusion
that more survey effort is required to collect a representative
data set in more heterogeneous habitats is likely to hold.
While it is intuitive that using too little survey data will not
provide a representative survey coverage, without the use of a
formal testing procedure, such as HRS, objectively identifying
how much survey coverage is enough is very difficult. While
not considered in this analysis, there is no reason why the
HRS could not be used to compare survey designs to help to
identify the most appropriate survey design for collecting repre-
sentative data for habitat modelling for a specific study area. In
particular, it could be used to identify the most efficient survey
design from those which are available.

Secondly, the HRS concept only aids in determining the level
of spatial coverage in order to obtain a representative sample for
the variables which are included in the analysis. If these selected
variables do not include those which are important in defining
the niche a species occupies within a study area, even if the HRS
suggests that the survey coverage is representative for the
selected variables, any resulting habitat preferences of species
distribution models are likely to be flawed. This issue highlights
the importance of sensible variable choice when attempting to
define the niche occupied by a species, especially for distri-
bution modelling purposes, rather than reflecting a flaw in
the HRS concept. As a result, the choice of habitat variables
to be used in any specific modelling purpose is as important
as ensuring that survey coverage for the variables chosen is
representative of the available combinations.

Thirdly, an HRS can be calculated for any scale or resolution
for an individual study area. However, if this scale or resolution
is inappropriate for the relationship between the species being
modelled and the environmental variables, even if the survey
coverage is representative, any model produced may be flawed.
Therefore, it is important to identify the appropriate scale or res-
olution to conduct a specific study. This will also help determine
how closely-spaced the points used to create the HRS along the
survey transect should be placed to ensure that they are ade-
quately positioned. A similar situation arises with the scale or
resolution of the habitat variables. If these variables are not
sampled at a resolution appropriate to the specific species
being examined, adequately sampling them will not necessarily
ensure that an accurate distribution model is obtained.

Fourthy, once it has been assessed whether the survey cov-
erage is representative of the available combinations of habitat

variables, the rarity and/or detectability of a species may play a
role in how much survey effort must be invested within the
representative survey coverage in order that a sufficient
sample size is obtained to ensure that an accurate understand-
ing of habitat preferences and/or the species distribution
model can be obtained. That is, the HRS can help determine
where to go, while species rarity and detectability may play
a role in determining how often to go there. Again, this is
an additional issue which needs to be addressed with
regards to ensuring that data collection methods are sufficient
to accurately define the niche that a species occupies rather
than representing an issue with the usefulness of HRSs.

Fifthly, in terms of applying HRS to investigating the repre-
sentativeness of specific survey designs, for some potential
survey designs, the total survey effort is stratified into separate
survey blocks based on aspects such as species density. In such
cases, if the survey coverage of each survey block is deter-
mined separately from the coverage in other survey blocks,
then separate HRSs should be applied to each block. If,
however, this is not the case and survey coverage is deter-
mined across all survey blocks, a single HRS could be applied.

Finally, while 1000 randomly-placed points were used to
assess the available habitat combinations for the four variables
of interest in this study for each area, larger areas, finer resol-
ution studies, a greater number of habitat variables and/or
areas with greater heterogeneity may require a larger set of
randomly placed points to accurately estimate the available
habitat combinations. However, given the wide availability
of relatively fast personal computers and the increasingly
widespread use of GIS software, using much larger sets of
randomly-placed points would not necessarily be prohibitive
in terms of processing power or time, and sets of up to
several hundred thousand or more randomly-placed points
could probably be processed relatively easily and quickly.

In the current study, a relatively stable, low HRS as the
number of transects increased was reached at or below about
0.15. Similarly, when the habitat sampled by the 1000 randomly
positioned points was compared to 10 other such data sets, the
average HRS values were around 0.12 for the first principal com-
ponent axis and below 0.10 for all other axes, and all HRS values
were close to or below 0.15. This suggests that this figure may be
a useful indicator of whether a sample is sufficiently representa-
tive of the available habitat combinations within a study area.
However, further research using a variety of survey patterns
and in many different areas is required to assess whether this
value is really a useful threshold that has widespread applica-
bility or whether it is unique to the study areas, survey design
and the multi-variate technique used in this study.

While this study concentrated on the use of HRS during the
survey planning stage to assess the minimum number of
transects required to provide a representative sample of all
available habitat combinations for a specific survey design, it
is also possible to apply HRS in a post-hoc manner to assess
how widely the results of a survey are applicable to the sur-
rounding area. This may be particularly useful in the marine
environment where survey coverage is often interrupted by
external factors, such as poor weather or equipment failure
meaning that even with the best planning the ideal survey cov-
erage may not actually be achieved. Similarly, HRS may be
useful when collecting data on a particular species is not the
main focus of a research cruise and the survey coverage is
not designed specifically for that purpose. If the HRS of the
data is sufficiently low to indicate that they are representative

survey coverage for species distribution modelling 7



of the surrounding area, then such data can be used to identify
absolute habitat preferences and even model the spatial distri-
bution of a species. However, if the HRS is relatively high,
while the data can still be used to examine habitat preferences
within the locations surveyed, or compare the habitat preferences
between species for the surveyed area, it may be inappropriate to
use the data to infer habitat preferences throughout a region or
use the data to construct predictive spatial models to be applied
across a wider area.

Similarly, while not specifically examined in this study, a
comparison of the HRS scores between the randomly-placed
points and those obtained from the surveys can be used to
provide information on which combinations of habitat vari-
ables have not been adequately sampled. Specifically, by exam-
ining the eigenvectors, it is possible to identify how each
variable contributes to each PC axis. Therefore, by examining
where the frequency distributions of the survey data set and
the randomly placed data set differ along each PC axis, the
eigenvectors for each variable can then be used to infer
which ranges and combinations of the variables have not
been adequately sampled.

In this study, the HRS was calculated based on a principle
component analysis (PCA). However, the use of a PCA for
this purpose may have some limitations. Specifically, PCAs
are fundamentally linear statistics that assume that the varia-
tions between variables are related in a linear manner along
individual PC axes. This may not always be the case and
may cause biases when individual PC axes are used to assess
representativeness. However, in some cases, using multiple
PC axes to calculate the HRSs (rather than a single one as
applied above) may minimize this bias by allowing for non-
linear relationships between the values of different variables
to be approximated. Similarly, PCA assumes that the variables
are continuous and that the variation in the data has normal
distribution around the PCA axis. If this is not the case,
other multi-variate techniques such as non-metric multi-
dimensional scaling (NMS), can potentially be used in place
of a PCA to calculate the HRS using a similar procedure to
that outlined above.

There is one important limiting factor to the HRS approach
proposed in this paper. This is that the distribution of values for
each variable across the whole study area must be known either
in advance or after the survey. While it may be possible to
obtain such data from existing data sets (e.g. for topography)
or using remote sensing (e.g. for sea surface temperature),
this may not be possible for some variables which must be
sampled in the field (e.g. temperature at depth). Therefore,
given the variables of interest under a specific circumstance, it
may not always be possible to apply this approach for assessing
the representativeness of survey coverage. However, this does
not reduce its usefulness under circumstances when area-wide
data are available to allow an HRS to be calculated.

Therefore, while it may require further development, par-
ticularly when being applied to specific circumstances, the
concept of the HRS is likely to prove useful in providing an
objective measure of representativeness for data which are
to be used for examining habitat preferences and/or species
distribution modelling. As a result, it will help put survey
design for such studies on a firmer footing and will hopefully
contribute to the rapidly-developing field of predicting species
distribution from the environmental variables. In particular, it
will help ensure that these models are based on sufficiently
representative data to ensure that they are not biased

towards over- or under-estimating actual distribution. This
is especially important if conservation decisions are to be
based on such models as such errors may lead to poor or
damaging management decisions.
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